Extracting maximum information from limited data

Jesús Rubio Department of Physics & Astronomy University of Sussex

Photon 2018, Aston University, Birmingham, UK 4th September 2018

Outline

Quantum metrology protocols

Enunciation of the problem

Mach-Zehnder interferometry with limited data and moderate prior information

Conclusions

Quantum metrology protocols

Probe preparation

Experimental arrangement $\longrightarrow \rho_0$

Unknown parameter encoding

$$\rho_0 \longrightarrow \rho(\theta) = U(\theta)\rho_0 U^{\dagger}(\theta)$$

Measurement scheme and data read-out

 $E(n) \longrightarrow \text{outcome } n,$

with probability $p(n|\theta) = \text{Tr} \left[E(n)\rho(\theta) \right]$

Parameter information summary

prior
$$p(\theta)$$
, likelihood $p(n|\theta) \longrightarrow p(\theta, n) = p(\theta)p(n|\theta)$

Parameter estimation

$$p(\theta, n) \longrightarrow \begin{cases} \text{estimate} : g(n) \\ \text{measure of uncertainty} : \sqrt{\overline{\epsilon}} \end{cases}$$

R. Demkowicz-Dobrzański et al., Progress in Optics, **60**, 345 (2015).
 E. T. Jaynes, Cambridge University Press (2003).

Enunciation of the problem

Motivation

Given μ observations $m{n}=(n_1,n_2,\ldots,n_\mu)$, if $\mu\gg 1\longrightarrow ar{\epsilon}\approx 1/(\mu F)$, where

$$F = \int_{\Delta} \frac{dn}{p(n|\theta)} \left[\frac{\partial p(n|\theta)}{\partial \theta} \right]^2 \Big|_{\theta=0}$$

However,

- if we want to study fragile systems, or
- the system under study is out of reach after a few observations,

then the previous formalism is not suitable.

[3] Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys. Comm., 2(1):015027 (2018).

Some strategies

- Bayesian quantum bounds (Ziv-Zakai, Weiss-Weinstein, optimal bias):

[4] M. Tsang, Phys. Rev. Lett., 108, 230401 (2012).

[5] X.-M- Lu and M. Tsang, Quantum Science and Technology, 1(1):015002 (2016)

[6] J. Liu and H. Yuan, New Journal of Physics, 18(9):093009 (2016)

- Direct numerical approaches (e.g., using Monte Carlo simulations or machine learning):

[7] S. L. Braunstein et al, Phys. Rev. Lett., 69:2153-2156 (1992)

[8] A. Lumino et al, arXiv: 1712.07570 (2017)

- Non-asymptotic analysis of those protocols that have been optimised using the asymptotic theory:

[3] Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys. Comm., 2(1):015027 (2018).

Our strategy

- 1. Best estimation scheme for a single shot, with
 - a) fixed ρ_0 ,
 - b) fixed $U(\theta)$,
 - c) and a flat prior for $\theta \in [-W/2, W/2]$.
- 2. μ repetitions of the optimal single-shot strategy.
- 3. Study of the uncertainty as a function of μ .

Mach-Zehnder interferometry with limited data and moderate prior information

Single-shot measure of uncertainty

$$\bar{\epsilon} = \int_{\Delta} dn \ d\theta \ p(\theta) \operatorname{Tr} \left[E(n) \rho(\theta) \right] 4 \ \sin^2 \left[\frac{g(n) - \theta}{2} \right]$$

If the width W satisfies that $W \lesssim 2,$ then

$$\bar{\epsilon} \approx \bar{\epsilon}_{\rm mse} = \int_{\Delta} dn \ d\theta \ p(\theta) \operatorname{Tr} \left[E(n) \rho(\theta) \right] \left[g(n) - \theta \right]^2$$

R. Demkowicz-Dobrzański et al., Progress in Optics, **60**, 345 (2015).
 Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys. Comm., 2(1):015027 (2018).

Optimal POVM and estimator for a single shot

$$\bar{\epsilon}\approx\bar{\epsilon}_{\rm mse}\geqslant\int_a^bd\theta p(\theta)\theta^2-{\rm Tr}\left(S\bar{\rho}\right),$$

where

$$\rho = \int_{a}^{b} d\theta p(\theta) \rho(\theta), \ \bar{\rho} = \int_{a}^{b} d\theta p(\theta) \rho(\theta) \theta \text{ and } S\rho + \rho S = 2\bar{\rho}.$$

The optimal strategy is then given by

$$S = \int_{\Delta} ds \, s \left| s \right\rangle \!\! \left\langle s \right|,$$

where s are the estimates and $E(s) = |s\rangle\langle s|$ are the POVM elements.

[9] S. Personick, IEEE, 17(3):240-246 (1971).
[10] K. Macieszczak et al., New Journal of Physics 16, 113002 (2014).

Measure of uncertainty for $\boldsymbol{\mu}$ observations

$$\bar{\epsilon} \approx \bar{\epsilon}_{\rm mse} = \int_{\Delta} d\mathbf{s} d\theta p(\theta) p(s_1|\theta) \dots p(s_{\mu}|\theta) [g(\mathbf{s}) - \theta]^2$$
$$= \int_{\Delta} d\mathbf{s} d\theta p(\theta) \operatorname{Tr} [E(s_1)\rho(\theta)] \dots \operatorname{Tr} [E(s_{\mu})\rho(\theta)] [g(\mathbf{s}) - \theta]^2,$$
$$\mathbf{s} = (s_1, s_2, \dots, s_{\mu}).$$

[3] Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys. Comm., 2(1):015027 (2018).

where

Optical quantum metrology

Jesús Rubio | University of Sussex

Approaching the quantum Cramér-Rao bound

[3] Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys. Comm., 2(1):015027 (2018).

The role of quantum correlations

[11] J. Sahota and N. Quesada, Phys. Rev. A, 91:013808 (2015).

Jesús Rubio | University of Sussex

Practical measurements

[3] Jesús Rubio, Paul Knott and Jacob Dunningham, J. Phys. Commun., 2(1):015027 (2018).

Jesús Rubio | University of Sussex

Conclusions

- A methodology for quantum metrology of experiments that operate in the regime of low μ has been developed.
- We have recovered the results of the local theory in the asymptotic regime.
- We have discussed the role of quantum correlations for low μ and the possibility of approaching our bounds with practical measurements.
- A preliminary framework for these ideas is available in

[3] Jesús Rubio, Paul Knott and Jacob Dunningham, *Non-asymptotic analysis of quantum metrology protocols beyond the Cramér-Rao bound*, J. Phys. Comm., 2(1):015027 (2018)

and a more complete version including the results of this talk will appear shortly on the arXiv. Stay tuned!

Thank you for your attention

University of Sussex

Work developed with Jacob Dunningham (supervisor) For further discussions: J.Rubio-Jimenez@sussex.ac.uk