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Quantum networks for multi-parameter estimation
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Motivation

Fundamental physics

- A better understanding of quantum uncertainty and our capability to
extract information (non-commuting estimators, entanglement)

- Testing the limits of our best theories through their use in the design of
precise experiments

- Uncovering new physics

[1] M. Szczykulska, Advances in Physics: X, 1:4, 621-639 (2016).
[2], J. A. Dunningham, Contemp. Phys., 47, 257-267 (2006).
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Practical interest: design of quantum sensing networks

- Optical interferometry

- Networks of clocks in space

- Quantum imaging

- Estimation of magnetic fields

- Tracking devices based on quantum radar and lidar technologies

[3] T. J. Proctor, Phys. Rev. Lett., 120, 080501 (2018).
[4] P. A. Knott et al., Phys. Rev. A, 94, 062312 (2016).
[5] Q. Zhuang et al., Phys. Rev. A, 96, 040304 (2017).
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Step 1: probe preparation

Experimental arrangement −→ ρ0

Step 2: encoding of a collection of d unknown parameters

ρ0 −→ ρ(θ) = U(θ)ρ0U
†(θ),

where U(θ) = U(θ1)⊗ · · · ⊗ U(θd)

Step 3: measurement scheme and data read-out

E(n) −→ outcome n,

with probability p(n|θ) = Tr [E(n)ρ(θ)]
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Our case: multi-phase estimation protocol
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Parameter information summary

prior p(θ), likelihood p(n|θ) −→ p(θ, n) = p(θ)p(n|θ)

Parameter estimation

p(θ, n) −→
{

estimate : g(n) = [g1(n), . . . , gd(n)]
measure of uncertainty :

√
ε̄

[6] C.W. Helstrom, Academic Press, New York (1976).
[7] E. T. Jaynes, Cambridge University Press (2003).
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Step 4: data processing

Suppose that we record the outcomes n = (n1, . . . , nµ) after repeating the
experiment µ times. Then Bayes’ theorem states that

p(θ|n1, . . . , nµ) = p(θ)p(n1|θ) · · · p(nµ|θ)
p(n1, . . . , nµ)

The uncertainty associated to the vector estimator g(n) = [g1(n), . . . , gd(n)] is∫
dθp(θ|n)

{
1
d

d∑
i=1

[gi(n)− θi]2
}
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Optimal strategies for phase-estimation

Strategy : estimators g(n) + measurement scheme E(n1), . . . , E(nµ), given

a) a flat prior for θi ∈ [−W0/2,W0/2], i = 1, . . . , d,

b) a initial state ρ0,

c) a unitary encoding U(θ) = exp
(
−i
∑d
i=1 Hiθi

)
with generators Hi

(Hamiltonian operators),

d) and a fixed averaged energy 〈H0〉+
∑d
i=1〈Hi〉 = n̄
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When we design experiments we do not know the specific outcomes n =
(n1, . . . , nµ) in advance. Therefore, our measure of uncertainty needs to be

ε̄ =
∫
dnp(n)

∫
dθp(θ|n)

{
1
d

d∑
i=1

[gi(n)− θi]2
}

For optical phases: valid in the regime of moderate prior knowledge (W0 . 2).

[8] Jesús Rubio and Jacob Dunningham, "Quantum metrology in the regime of limited data",
in preparation.
[9] Jesús Rubio et al., J. Phys. Comm., 2(1):015027 (2018).
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Optimisation based on the quantum Cramér-Rao bound :

ε̄ &
1
µd

d∑
i=1

(
F−1)

ii

where
Fij = 4 (〈HiHj〉 − 〈Hi〉〈Hj〉)

are the elements of the quantum Fisher information matrix for pure states and
commuting generators.

Only valid in general when the number of repetitions µ is very large!

[10] T. Proctor et al., arXiv: 1702.04271 (2017).
[11] S. Ragy et al., Phys. Rev. A 94, 052108 (2016).
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Simultaneous and independent strategies: a global
approach
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1. d independent NOON states with n̄/d photons each

|ψ0〉 = 1√
2d

(|n̄/d 0〉+ |0 n̄/d〉)⊗d =⇒ ε̄ &
d2

µn̄2

2. Generalised NOON state (optimal version)

|ψ0〉 = 1
(
√
d+ d)1/2

(d1/4 |n̄ 0 · · · 0〉+ |0 n̄ 0 · · · 0〉+ · · ·+ |0 · · · 0 n̄〉)

⇓

ε̄ &
(1 +

√
d)2

4µn̄ −→
d�1

d

4µn̄2

[12] P.C.Humphreys et al., Phys. Rev. Lett., 111:070403 (2013).
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A natural question arises:

Is the entanglement between sensors the cause of this enhancement?
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Local strategies

Suppose that we consider a simultaneous but local strategy based on the family
of probes

|ψ0〉 =
[√

1− n̄

N(d+ 1) |0〉+

√
n̄

N(d+ 1) |N〉
]⊗d+1

where N is a free parameter that can be varied while
∑d
i=0〈Hi〉 = n̄ remains

constant. Then
ε̄ &

(1 + d)2

4µn̄[(1 + d)N − n̄]

[4] P. A. Knott et al., Phys. Rev. A, 94, 062312 (2016).
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If N = n̄, then
ε̄ &

(1 + d)2

4µn̄2d
−→
d�1

d

4µn̄2

which recovers the same scaling that the generalised NOON state. The enhance-
ment depends on the intra-mode correlations within each mode.

However, we can also observe that

ε̄ &
(1 + d)2

4µn̄[(1 + d)N − n̄] −→
N→∞

0

This implies that the local strategy can beat any other imaginable scheme
(entangled or not).

Is this really the case?

[4] P. A. Knott et al., Phys. Rev. A, 94, 062312 (2016).
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A single shot with moderate prior knowledge

If we optimise the single-shot uncertainty instead, we find that

ε̄ =
∫
dn p(n)

∫
dθp(θ|n)

{
1
d

d∑
i=1

[gi(n)− θi]2
}
>

1
d

d∑
i=1

[
∆pθ

2
i −∆ρS

2
i

]
,

where Si is the optimal quantum estimator associated to θi and ρ =
∫
dθp(θ)ρ(θ).

[8] Jesús Rubio and Jacob Dunningham, "Quantum metrology in the regime of limited data",
in preparation.
[13] H. Yuen and M. Lax, IEEE, 19(6):740-750 (1973).
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Global estimation revisited

|ψ0〉 = 1
(
√
d+ d)1/2

(d1/4 |n̄ 0 · · · 0〉+ |0 n̄ 0 · · · 0〉+ · · ·+ |0 · · · 0 n̄〉)

⇓

ε̄ >
1
n̄2

[
π2

3 −
4

(1 +
√
d)2

]
−→
d�1

1
n̄2

(
π2

3 −
4
d

)
We conclude that generalised NOON states display the same scaling both for
µ = 1 and µ� 1.

Note that the maximum prior width allowed
for unambiguous estimation is W0 = 2π/n̄.
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Local estimation revisited

|ψ0〉 =
[√

1− n̄

N(d+ 1) |0〉+

√
n̄

N(d+ 1) |N〉
]⊗d+1

⇓

ε̄ >
1
n̄

[
π2

3 − f(N, n̄, d)
]

The scaling of the global strategy is recovered when N = n̄, since in that case

ε̄ >
1
n̄

[
π2

3 −
4d

(1 + d)2

]
−→
d�1

1
n̄2

(
π2

3 −
4
d

)
This implies that, a priori, using entanglement is not necessarily a better strategy
for a single shot. However...
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ε̄ >
1
n̄

[
π2

3 − f(N, n̄, d)
]
−→
N→∞

1
d

d∑
i=1

∆pθ
2
i = π2

3n̄

That is, our method removes the non-physical solution. The key to understand
why is to observe that the periodicity associated to

|ψ0〉 =
[√

1− n̄

N(d+ 1) |0〉+

√
n̄

N(d+ 1) |N〉
]⊗d+1

is 2π/N ; consequently, the limit N →∞ requires to know in advance the solution
to the estimation problem.

As a consequence, there could be other entangled (or non-entangled) schemes
that, for a given amount of prior knowledge, provide a better performance that
the local strategy proposed in [4].

[4] P. A. Knott et al., Phys. Rev. A, 94, 062312 (2016).
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Conclusions

- We have reviewed the fundamentals of multi-parameter quantum estimation
theory.

- We have revisited the performance of local and global strategies in the
regime of moderate prior knowledge a single shot.

- It has been demonstrated that a rigorous treatment of the prior information
removes non-physical solutions and suggests that the privileged status of
local strategies requires further study.
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Thank you for your attention


