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RESEARCH PROBLEM

We address the problem of estimating the elapsed time from the evolution of a quantum system using the Bayesian version of quantum metrology, which is a framework providing the
tools to study protocols with a finite amount of resources when certain prior information is available. Furthermore, we compare the results derived from this approach with those that
are predicted by the asymptotic theory in terms of the Fisher information and the Cramér-Rao bound. Our results constitute a proof of concept that could be useful in the study of more
realistic clocks, and from a fundamental perspective they offer a way of quantifying time by means of a Bayesian uncertainty inequality that can take into account any prior information
that we may have.

BAYESIAN QUANTUM METROLOGY: METHODOLOGY

Quantum metrology protocols

Measure of uncertainty

Given µ identical and independent trials,
we quantify the estimation uncertainty with

ϵ̄mse(µ) =

∫
dmdt p(t)p(m|t)

[
t̃(m)− t

]2
.

Asymptotic uncertainty

For pure states and a unitary U(t) =
exp(−iGt) with generator G, the quantum
Fisher information is

Fq = 4[Tr(ρ0G2)− Tr(ρ0G)2].

If µ ≫ 1 and a moderate amount of prior
knowledge is available, then [1]

ϵ̄mse(µ ≫ 1) ≳ 1/(µFq)

The asymptotic theory is a useful guide to
select probes with great sensitivity.

Optimal single-shot uncertainty

For a single shot we find that [2]

ϵ̄mse(µ = 1) ⩾ ∆t2p −∆T̃ 2
ρ ,

with

• ∆t2p = ⟨(t − ⟨t⟩)2⟩, where we use the
notation ⟨□⟩ =

∫
dt p(t)□ ;

• ∆T̃ 2
ρ = Tr(ρT̃ 2)− Tr(ρT̃ )2 ; and

• T̃ is the optimal quantum estimator
defined by T̃ ρ + ρT̃ = 2ρ̄, ρ = ⟨ρ(t)⟩
and ρ̄ = ⟨ρ(t)t⟩ [3, 4].

The bound is saturated by measuring T̃ =∫
ds s |s⟩⟨s|, that is, when E(s) = |s⟩⟨s|.

Our strategy (more in [1, 2])

Given p(t) and G,

1. Choose a ρ0 with maximum Fq .

2. Select the POVM elements {E(s)} that
are optimal for both µ = 1 and µ ≫ 1.

3. Verify that the prior information is
sufficient for the selected scheme.

Then we can study the uncertainty

ϵ̄mse(µ) = ∆t2p −∆t̃2

associated with µ identical and independent
trials, where

• ∆t̃2 =
∫
ds p(s)[t̃(s)− ⟨t⟩]2,

• t̃(s) =
∫
dt p(t|s)t is the optimal

estimator,

• p(t|s) ∝ p(t)p(s|t) is the posterior
probability,

• p(s) =
∫
dt p(t)p(s|t), and

• s = (s1, . . . , sµ).

Therefore, our measurement strategy is optimal
both for a single shot and in the asymptotic
regime of many trials. Moreover, this approach
is also optimal in the regime of limited data for
experiments where we cannot or do not wish to
correlate different trials.

THE QUBIT CLOCK I: SYSTEM CONFIGURATION

Qubit clock

1. Initial state: ρ0 = (I+ r̂⊺ · σ)/2

2. Generator: G = (E/ℏ)n̂⊺ · σ

State selection and time evolution

The quantum Fisher information is

Fq = 4(ℏ/E)2[1− (r̂⊺ · n̂)2] ⩽ 4(ℏ/E)2.

By selecting r̂⊺ = (1, 0, 0) and n̂⊺ = (0, 0, 1)

we can construct the scheme

ρ0 = (I+ σx)/2, G = (E/ℏ)σz

for which Fq is maximum. Hence,

ρ(t) = [I+ cos(2Et/ℏ)σx + sin(2Et/ℏ)σy]/2.

Asymptotically optimal POVM

From the analysis of 1/(µFq) we can find

E(s±) = (I± σy)/2.

THE QUBIT CLOCK II: BAYESIAN RESULTS

Probabilities: the likelihood function

The Born rule applied to E(s±) and ρ(t)
gives us the probabilities

p(s±|t) = Tr[E(s±)ρ(t)] = [1±sin(2Et/ℏ)]/2.

If we use these probabilities to simulate µ
trials of our experiment, we find that
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That is,

• p(s±|t) = p(s±|t + Pk), with Pk =
kπℏ/E, and

• p(s±|t) = p(s±|2Ak − t), with Ak =
πℏ(2k + 1)/(4E).

Hence, this scheme requires that the elapsed
time t is known to lie within an interval of
width W0 ⩽ πℏ/(2E).

Available prior information

p(t) = 1/W0, t ∈ [a0, a0 +W0],

where a0 = πℏ/(4E) and W0 = πℏ/(2E).

Optimal single-shot quantum estimator
and POVM

The optimal quantum estimator is

T̃ = [πℏ/(2E)](I− 2σy/π
2),

with estimates s± = [πℏ/(2E)](1 ∓ 2/π2)
and projectors E(s±) = (I ± σy)/2. Thus
the same POVM that is optimal for µ ≫ 1 is
also optimal for µ = 1.

Posterior probability

p(t|s±) = [2E/(πℏ)][1± sin(2Et/ℏ)].

This probability contains the information
about the elapsed time t provided by an
experiment with outcomes s.

Time estimation with moderate prior information and limited data
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Bayesian uncertainty for the estimation of the elapsed time t. We can observe how the low-
µ performance of our scheme deviates significantly from the prediction of the asymptotic
inequality. Furthermore, our method captures the crucial role that different states of prior
information play in the regime of limited data.

DISCUSSION AND CONCLUSIONS

• We have demonstrated how to apply
the Bayesian methodology introduced
in [1, 2] for the estimation of elapsed
time.

• We have studied how different
amounts of prior information affect
the estimation of the elapsed time in
the regime of limited data.

• We have established the differences
between (µFq)ϵ̄mse ≳ 1 (see, e.g.,

[5]) and ∆t̃2 + ϵ̄mse ⩾ ∆t2p for the
study of time in a quantum context.
This suggests a potentially broader
use of the latter inequality, which
has the advantage of including prior
information.

• Future work may explore possibilities
such as the applicaton of this method
to a realistic clock or the analysis of the
differences and similarities between
our work and other approaches [6, 7].
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