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Bayesian probabilities

Definition and calculus of probabilities

P (A|B) ≡ real number representing the degree of plausibility for A to be
true given B, where A and B are propositions.

1. 0 6 P (A|B) 6 1,

2. P (A|B) = 1 when it can be concluded that A is true on the basis of B,

3. P (¬A|B) = 1− P (A|B), and

4. P (A ∧B|C) = P (A|C)P (B|A ∧ C),

[1] R. T. Cox, American Journal of Physics, 14(1):113, 1946.
[2] E. T. Jaynes, Cambridge University Press, 2003.
[3] L. E. Ballentine, Foundations of Physics, 46, 2016.

Jesús Rubio | University of Exeter 3/23



Bayes theorem

P (A|B ∧ I0) = P (A|I0)P (B|A ∧ I0)
P (B|I0) ,

where

• P (A|I0) ≡ prior probability,

• P (B|A ∧ I0) ≡ likelihood,

• P (A|B ∧ I0) ≡ posterior probability, and

• P (B|I0) ≡ normalisation constant.

The prior P (A|I0) is updated using the new information about A provided by
the evidence B, which is encoded in the likelihood P (B|A ∧ I0), and the overall
result is the construction of the posterior P (A|B ∧ I0).
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An example

• I1 = Let θ be the magnitude of an optical phase =⇒ 0 6 θ < 2π.

• I2 = We are completely ignorant about such magnitude

=⇒ the estimation problems associated with θ and θ′ = θ + c, for some
constant c and taking it to be modulo 2π, are equivalent.

We would like to construct the probability P (dθ|I0) = p(θ)dθ, with I0 = I1 ∧ I2.
From I2 we can derive the functional equation

p(θ)dθ = p(θ′)dθ′ = p(θ + c)dθ =⇒ p(θ) = p(θ + c),

whose solution is p(θ) ∝ 1, and upon its normalisation using I1 we conclude that

p(θ) = 1/(2π), for 0 6 θ < 2π.

[2] E. T. Jaynes, Cambridge University Press, 2003.
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Quantum estimation theory

Uncertainty and estimation

• We wish to estimate d unknown parameters θ = (θ1, . . . , θd) by construct-
ing the estimators g(m) = (g1(m), . . . , gd(m)) from the µ experimental
outcomes m = (m1, . . . ,mµ).

• D[g(m),θ] ≡ deviation function quantifying the deviation of our estimates
g(m) when the parameters happened to be θ.

• In a theoretical study we know neither the parameters nor the experimental
outcomes; consequently, an appropriate measure of uncertainty is

ε̄ =
∫
dθdm p(θ,m) D[g(m),θ].
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The quantum part of the problem

Using the product rule and the Born rule we can express the joint probability as

p(m,θ) = p(θ)p(m|θ) = p(θ)Tr [E(m)%(θ)] ,

where

• p(θ) ≡ prior probability,

• %0 → %(θ) ≡ state after encoding the unknown parameters θ, and

• E(m) ≡ probability-operator measurement (POM) with outcomes m.

Thus
ε̄ =

∫
dθdm p(θ)Tr [E(m)%(θ)]D[g(m),θ].
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The fundamental equations of the optimal quantum strategy

Using E(g) =
∫
dm δ (g(m)− g)E(m) we can recast the uncertainty as

ε̄ =
∫
dg Tr [E(g)Q(g)] , with Q(g) =

∫
dθ p(θ)%(θ)D(g,θ).

If Eopt(g) is the optimal strategy, then there exists a Hermitian operator Y
satisfying that {

Y =
∫
dg Q(g)Eopt(g) =

∫
dgEopt(g)Q(g),

Q(g)− Y > 0,

and we have that ε̄ > ε̄min = Tr(Y ).

[4] A. S. Holevo, Proc. of the 2nd Japan-USSR Symp. on Prob. Theory, 104119, 1973.
[5] C. W. Helstrom, Academic Press, New York, 1976.
[6] R. Demkowicz-Dobrzański et al., Progress in Optics, 60:345435, 2015.
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Multi-parameter shot-by-shot methodology

Practical aspects of our problem: moderate prior knowledge

Suppose we know that the parameters are localised within a hypervolume ∆0
centred around θ̄, so that the flat prior p(θ) = 1/∆0 is appropriate in that region.

Intermediate prior information regime: neither ∆0 → 0 nor ∆0 � 1.

In that case,

ε̄ ≈ ε̄mse =
d∑
i=1

wi

∫
dθdm p(θ,m) [gi(m)− θi]2

where wi > 0 is the relative importance of estimating θi and
∑d
i=1 wi = 1.

[7] Jesús Rubio et al., J. Phys. Comm., 2(1):015027 (2018).
[8] T. J. Proctor et al., arXiv:1702.04271, 2017.
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Practical aspects of our problem: repetitions

If the operations ρ0 → ρ(θ) = U(θ)ρ0U
†(θ) → E(mi) are repeated µ times,

then

1) %(θ) = ρ(θ)⊗ · · · ⊗ ρ(θ)︸ ︷︷ ︸
µ times

2) E(m) = E(m1)⊗ · · · ⊗ E(mµ)

However, if we try to solve Helstrom and Holevo’s equations using the state in
1), then the optimal strategy may involve collective measurements, which cannot
be written as 2).

Instead, let us focus first on the single-shot case:

ε̄mse =
d∑
i=1

wi

∫
dθdm p(θ,m) [gi(m)− θi]2 .
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New Bayesian multi-parameter bound

The error can be rewritten as ε̄mse = Tr[WDΣmse], whereWD = diag(w1, . . . , wd)
and

Σmse =
∫
dθdm p(θ,m) [g(m)− θ] [g(m)− θ]ᵀ .

In addition, we can construct the scalar quantity

u
ᵀΣmseu =

∫
dθdm p(θ,m) [gu(m)− θu]2 ,

with
gu(m) = u

ᵀ
g(m) = g

ᵀ(m)u,

θu = u
ᵀ
θ = θ

ᵀ
u,

and u being an arbitrary real vector.
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Applying Helstrom and Holevo’s equations to such scalar quantity we find that

u
ᵀΣmseu >

∫
dθ p(θ)θ2

u − Tr(ρS2
u),

where

ρ =
∫
dθ p(θ)ρ(θ), Suρ+ ρSu = 2ρ̄u, and ρ̄ =

∫
dθ p(θ)ρ(θ)θ.

In addition, recalling that θu =
∑d
i=1 uiθi, note that

ρ̄u =
d∑
i=1

uiρ̄i, with ρ̄i =
∫
dθp(θ)ρ(θ)θi;

Su =
d∑
i=1

uiSi, with Siρ+ ρSi = 2ρ̄i and Si Hermitian.

[5] C. W. Helstrom, Academic Press, New York, 1976.
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Finally, imposing that the previous inequality is true for all u we arrive at the
matrix quantum bound

Σmse > Σq =
∫
dθp(θ)θθᵀ −K,

where
Kij = Tr [ρ (SiSj + SjSi)] /2.

Moreover, its scalar version reads as

ε̄mse >
d∑
i=1

wi(∆θ2
p,i −∆S2

ρ,i),

with ∆S2
ρ,i ≡ Tr(ρS2

i ) − Tr(ρSi)2 and ∆θ2
p,i ≡

∫
dθp(θ)θ2

i − [
∫
dθp(θ)θi]2.

This is our central result.

[9] Jesús Rubio and J. Dunningham, arXiv:1906.04123, 2019.
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Saturability and shot-by-shot method

Our bound can be saturated when g(m) =
∫
dθ p(θ|m)θ and [Si, Sj ] = 0 for

all i, j. In that case, the optimal measurement is given by the projections on the
common eigenstates of {Si}.

If the optimal single-shot POM E(mi) ≡ E(si) = |ψ(si)〉〈ψ(si)|, with outcome
si, exists, then the uncertainty associated with µ repetitions of the optimal
strategy (estimator + POM) is

ε̄mse =
d∑
i=1

wi

∫
dθds p(θ, s) [gi(s)− θi]2 .

[9] Jesús Rubio and J. Dunningham, arXiv:1906.04123, 2019.
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Quantum sensing networks
Qubit network
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• Network initial state: |ψ0〉 = [|00〉+ γ(|01〉+ |10〉) + |11〉]/
√

2(1 + γ2).

• Unitary encoding: U(θ1, θ2) = exp[−i(σz,1θ1 + σz,2θ2)/2].

• Prior: p(θ1, θ2) = 4/π2, when (θ1, θ1) ∈ [−π/4, π/4]× [−π/4, π/4].

• Weighting matrix: WD = I/2.

• It may be shown that its single-shot minimum is achieved for |γ| = 1,
which is a local strategy.

• In that case we have that

S1 = (4− π)
π
√

2
σy ⊗ I, S2 = (4− π)

π
√

2
I⊗ σy,

which commute. Thus S1 and S2 are the optimal quantum estimators,
and by diagonalising them we find the optimal single-shot POM |s+, s+〉,
|s−, s−〉, |s+, s−〉, |s−, s+〉, where |s±〉 = (|0〉 ± i |1〉)/

√
2.

[9] Jesús Rubio and J. Dunningham, arXiv:1906.04123, 2019.
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[8] T. J. Proctor et al., arXiv:1702.04271, 2017.
[9] Jesús Rubio and J. Dunningham, arXiv:1906.04123, 2019.
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Discrete phase imaging
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• Network state: |ψ0〉 = 1√
d+α2 (α |n̄0〉+

∑d
k=1 |n̄k〉).

• Unitary encoding: U(θj) = exp(−ia†jajθj), for 1 6 j 6 d. The remaining
mode is employed as a reference.

• Prior: ∆0 = (2π/n̄)d, with n̄ > 4, θ̄ = (0, 0, . . . ).

• Weighting matrix: WD = I/d.

• The minimum single-shot uncertainty is found to be

ε̄mse >
1
n̄2

[
π2

3 −
4

(1 +
√
d)2

]
−→
d�1

1
n̄2

(
π2

3 −
4
d

)
.

• However,
Sk = −2iα

n̄ (1 + α2) (|n̄k〉〈n̄0| − |n̄0〉〈n̄k|) ,

so that [Sk, Sj ] 6= 0. Does this mean that we cannot reach the scaling
with d predicted by our bound?
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• In a local protocol ρ0 = ρref
0 ⊗ ρ

(1)
0 ⊗ · · · ⊗ ρ

(d)
0 , with ρ(k)

0 = |φ(k)
0 〉〈φ

(k)
0 |

in the pure case, we have that Sk = Iref ⊗ I⊗ · · · ⊗ S(k) ⊗ · · · ⊗ I, which
commute trivially with each other.

• If we choose

|φ0〉 =
[√

1− n̄

N(d+ 1) |0〉+

√
n̄

N(d+ 1) |N〉
]
,

with N = n̄, then we find that

ε̄mse >
1
n̄2

[
π2

3 −
4d

(1 + d)2

]
−→
d�1

1
n̄2

(
π2

3 −
4
d

)
,

which provides the same scaling that the global scheme does; consequently,
the shot-by-shot method could be applied even when our bound cannot be
saturated for the global strategy.

[9] Jesús Rubio and J. Dunningham, arXiv:1906.04123, 2019.
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Summary and conclusions
- We have reviewed the Bayesian approach and the fundamental equations
for the optimal quantum strategy.

- To solve realistic problems with limited data and moderate prior knowledge,
we have derived a new single-shot Bayesian quantum bound, and we have
exploited it to construct a multi-parameter shot-by-shot methodology.

- Among all the bounds that neglect the interference between individually
optimal quantum strategies, our result is arguably the preferred option,
since it recovers the true optimum in the limit of a single parameter, and
it gives the true multi-parameter optimum when {Si} commute.
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- We have applied these ideas to a qubit network and a model for discrete
phase imaging, and we have shown that entanglement is not always re-
quired to achieved the optimal precision in the regime of limited data.

- In summary, our method provides a powerful and novel framework to study
schemes with limited data and moderate prior knowledge, a regime of
practical interest and normally out of the scope of other techniques in
the literature. If you are interested in learning more about this approach
to quantum metrology, please have a look at

Jesús Rubio and J. Dunningham, New J. of Phys., 21(4):043037, 2019.
Jesús Rubio and J. Dunningham, arXiv:1906.04123, 2019.

Moreover, my PhD thesis will be released soon. Stay tuned!
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Thank you for your attention!


