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0.    Quantum estimation theory à la Bayes

I. Quantum sensing networks: imaging and qubits
˃ Local and global properties
˃ Geometry and correlations

II. Quantum thermometry – a tale in three acts:
˃ the practical,
˃ the local,
˃ and the global

III. Quantum metrology of scale parameters
˃ Phases, locations and … scales?
˃ How does nature do it: optimal strategies in scale estimation

Our plan for today





Preparation and measurement

Initial	state
𝜌! Transformed state

𝜌 𝚯 = 𝜌(Θ", … , Θ#) Measurement (POVM)
𝐸 𝒎 = 𝐸(𝑚_1,… ,𝑚_𝜇) Outcomes

𝒎 = (𝑚", … ,𝑚$)

𝜽 ≡ hypothesis about the true but unknown values 𝚯

1 2 3 4



§ Prior information:
˃ Irrespective of the measurement outcomes
˃ In many cases: maximum ignorance

§ Likelihood function:
˃ Links the unknown parameter with the measured quantity
˃ Given by the Born rule (quantum systems)

§ Bayes theorem

𝑝 𝜽

𝑝 𝜽|𝒎 ∝ 𝑝 𝜽 𝑝 𝒎|𝜽 = 𝑝 𝜽 Tr[𝐸 𝒎 𝜌(𝜽)]

Estimation within the Bayesian paradigm

𝑝 𝒎|𝜽 = Tr[𝐸 𝒎 𝜌(𝜽)]



An information summary

§ What is the goal?

˃ Estimator: 

˃ Post-processing error

§ How do we get there?

˃ Minimise the overall uncertainty

That is, we need to calculate: min
%,'

̅𝜖 = ?

arXiv:1912.02324

Relevant in experiments Relevant for theorists



Note that…

§ A useful approximation (Cramér-Rao asymptotic limit):

§ Deviation function for phases lying within 𝜃( ∈ − )
*
, )
*

, with 𝐿 < 2

• Single parameter square error:

• For multiple parameters, with weighting matrix 𝑊:

̅𝜖+,-
1
𝜇
Tr(𝑊𝐹./")

arXiv:1912.02324
𝜇 ≫ 1

≳





Quantum sensing networks: local and global properties

§ Local properties: 
each individual sensor

§ Global properties: 
several sensors involved



(Discrete) Quantum imaging

arXiv:1912.02324

§ Quantum enhancement by using NOON states § Entanglement not needed for such an enhancement



A new multi-parameter quantum bound

v For NOON states: v For the local strategy:

The local strategy can be as good 
but not arbitrarily precise!

D. Branford and J. Rubio New J. Phys. 23 123041 (2021)

The metrological power of vacuum-number superpositions 
is, at best, equivalent to that of NOON states.



Qubit sensing network





















Quantum harmonic oscillator in thermal equilibrium 

§ 𝜃 = hypothesis about the true value of 𝑇

§ Protocol statistics 
fully described by: 



Usual procedure in practice:

˃ Measure the position

˃ Build a position histogram

˃ Fit the temperature-dependent 
probability to such histogram



Caveats

§ Histogram-based approaches:

˃ Bin selection
˃ Sufficiently large number of 

measurements



Local quantum thermometry: how does it help?

§ Cramér-Rao bounds:

Δ Y𝜃* ≥
1

𝜇 𝐹 𝑇
≥

1
𝜇 𝐹. 𝑇



Local quantum thermometry: how does it help?

§ Direct experimental design:

Given the dynamics (Hamiltonian)

find: 
- state 𝜌(𝑇)
- measurement M 𝑥

s.t. 𝐹.(𝑇) is maximum. 

§ Indirect experimental design:

Given a practical 𝑀 𝑥 and a 
specific state 𝜌(𝑇)

calculate 𝐹(𝑇) , 𝐹. 𝑇 ;

- if 𝐹 𝑇 = 𝐹. 𝑇 , the 
scheme is optimal

- if 𝐹 𝑇 ≠ 𝐹. 𝑇 , keep 
searching



Caveats

§ Histogram-based approaches:

˃ Bin selection
˃ Sufficiently large number 

of measurements

§ Local quantum thermometry:

˃ Exact but very restrictive: 
exponential family + unbiasedness

˃ Local prior information

˃ Asymptotically large data set

˃ Dependence on true temperature



A more general starting point: the Bayesian paradigm

§ Prior information

˃ Maximum ignorance for scale parameters

§ Assessing the (overall) uncertainty of scale parameters: logarithmic errors

generalised relative error or 
noise-to-signal ratio



A two-line solution

§ Optimal rule to post-process measurement outcomes into a temperature reading

˃ Universally valid

§ Minimum uncertainty overall (not just a bound)

˃ Useful to study fundamental limits to the precision 
˃ University valid for a given measurement 
˃ Not just a bound!

≳



Revisiting the harmonic oscillator in thermal equilibrium



Revisiting the harmonic oscillator in thermal equilibrium

§ Least square method: biased for finite statistics

§ Bayesian approach: as good or better than 
traditional methods



The perils of local thermometry: non-interacting spin-1/2 gas

§ Prior information:

§ Measurement information:



The perils of local thermometry: non-interacting spin-1/2 gas



The perils of local thermometry: non-interacting spin-1/2 gas





What is a scale parameter?

arXiv:2111.11921

Definition:

The key symmetry: scale invariance

Examples:
• temperature: !

"!#

• (Inverse of) Poisson rate: 𝑘𝑡 = $
%/"

• (Inverse of) decay rates:  𝛾𝑡 = $
%/'



Maximum ignorance about scale parameters



Why logarithmic errors?



Quantum scale estimation: statement of the problem

Using the Born rule, 

arXiv:2111.11921

Our goal is to find the minimum: 



Optimal quantum strategy

Optimal measurement

arXiv:2111.11921

Optimal estimator

Experimental error



Revisiting equilibrium quantum thermometry

§ For thermal states, energy measurements are universally optimal
§ The optimal measurement may sometimes be implemented in the laboratory

arXiv:2111.11921



§ Not saturable when 𝑆(, 𝑆0 ≠ 0
§ Quantum compatibility: prior- and uncertainty-dependent

arXiv:2111.11921

Towards scale-invariant multi-parameter schemes



An attractive perspective:

˃ Elementary quantities (each its own quantum estimation theory)
˃ Multi-parameter estimation with mixed models?

Phases, locations and scales

arXiv:2111.11921



§ There is, in networked quantum sensing, …
˃ … a fundamental link between correlations and geometry
˃ … a trade-off between the asymptotic and non-asymptotic precisions
˃ ... a rich and unexplored area within limited-data metrology, which requires Bayesian techniques

by construction

§ Quantum thermometry à la Bayes…
˃ … is very general (minimal assumptions)
˃ … is experimentally friendly, as it provides

˃ a universal map from data sets to optimal estimates
˃ a clear and direct assessment of experimental errors

˃ … is reliable (simulations) and works in experiments
˃ … provides the key mathematics for the metrology of scale parameters

§ Quantum scale estimation …
˃ … establishes a framework for the most precise estimation that the laws of quantum mechanics 

allow for scale parameters
˃ … closes an important gap in quantum metrology 
˃ … provides a fundamental picture: phases, locations and scales

What have we learnt?



If you have any question or comment: 
J.Rubio-Jimenez@exeter.ac.uk
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Why logarithmic errors?

Prior range:



Some theoretical consequences: quantum observables

arXiv:2111.11921



Some theoretical consequences: quantum observables

arXiv:2111.11921

phase/location observable

phase and time observables
position and momentum observables 
(estimation-theoretic)

scale observable (e.g., temperature)


