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Quantum metrology of scale parameters

Experimental description
e Dimensionless measurand z.
e Known parameters y = (yi, 4o, . . . ).
e Unknown parameter O,

What is a scale parameter?

O scales y; if, for fixed O, y; IS con-
sidered ‘large’” when y;/6 > 1 and
'small” when y;,/0 < 1. This is invari-
ant under fransformations

with positive ~, since y,/© = y/ /6’

Metrological protocol
1. Prepare the state p,(0).
2. Implement the POM M, ().

3. Record the outcome z, with stafis-
tics given by the Born rule

Y
My @)y (0)] = h (2.5 )
4. Find the estimator 6,(z) = Af,(z).

Optimisation problem

min ; Tr{ / dz M (z) Wy[éy(@]}a

My(x), by
with prior p(6) and

Wy[éy(x)] = /d@p(@) py(0) log” eyél')

Result 1: Optimal strategy

Let the operator

Sy = /ds Py(s) s
solve tThe Lyaponuv equation

Sy@y,() =+ Qy,OSy — 2Qy,17
where

sus= [ @000 106" ()

then, the optfimal estimaftor is

~

Oy(x) = Oy(s) = O, exp(s),
and the opfimal POM is
My () > My(s) = Py(s).

Result 2: Ultimate precision limits

The hierarchy of inequalifies
Emlezép_lcyzgp_jy

gives fundamental lower bounds
on the precision of scale estima-
fion problems. Here,

* ¢, ONly depends on the prior,

e Using the optimal estimator satu-
rates the first inequality, and

e Using tThe optimal POM saturates
the second inequality.

The expressions for €,, K, and J,
are given in Rubio et al.'?

Beyond quantum phase estimation

Parameter phase location scale

Support 0<0<2r —00 < 0 < o0 0<f< oo

Symmetry 0 -0 =0+2vr,.v€Z O0—0=0+~v,veRO—O0 =~0,ve R,

Ignorance p(0) =1/2m p(0) < 1 p(f) < 1/6

Error D(0, 0) 4sin’[(6 — 6) /2] (0 — 0)? log*(6/6)
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e Progress dcross modern quantum sciences is intimately connected to the

possibility of performing highly precise measurements.

e Quantum meftrology is being expanded to new regimes including dissipa-

tive dynamics, finite information, incompatible estimators and parameters

other than phases.

e This poster presents the optimal quantum strategy for the measurement of

time scales of dissipative processes, choosing sponfaneous photon emis-

sion as a case study.

e This is achieved by means of quantum scale metrology, a new Bayesian

framework based on logarithmic errors that enables the precise estimation

of scale parameters.

Quantum-enhanced estimation of a fime scale

Spontaneous photon emission

Let a two-level atom prepared as

) =V1—alg) ++Vale)

undergo spontaneous photon emis-
sion:

\e >
S

-

\%

\%B

Using the formalismm of open quan-

cess may be described as’
pi(T) =1 — an(7)] !g><g\1+ ary(T) |eXe]
+ [a(l —a) m(7)]2 (|g)e| + leXgl),

with (1) = exp(—t/7), lifetime 7 and
elapsed time ¢.

Estimation problem

Unknown parameter: © = r; avail-
able prior information:

e/t € 0.01,10].
*p(f) =0.145/6.

fum systems, the stafistics of this pro- e q = 0.9.
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‘Yes’/‘No’ measurement
Whether or not a photon is emitted
is captured by the physical POM’

My, = [L— ()] |eXe| (Yes"),

taTO

M;Y = |gXg| + m(mo) leXe] CNo).
Remarks:

e INnitial "hint” 7, at the true lifetime 7
needed.

¢ Informative, as it reduces the prior
uncerfainty e,.

e 7 eqsier to estimate when the de-
cay is likely fo have already hap-
pened, i.e., for ry/t < 1.

e Yet, generally suboptimal.

SLD measurement

The Fisher information leads to the
local POM?

MZ,T@ — ‘Ai,ﬁ) <)\i,7'0’7 fOrZ — 17 27

with Li(o)| ALY = XX ), Ly(7)pi(7)
+oi(T) Li(T) = 20-p4(T).

Remarks:

e Initial "hint” 7, still needed.

e More informative than ‘Yes'/ No’
measurements.

e However, suboptimal for 7,/t > 1.

Optimal measurement

The eigendecomposition of S, leads
to the opfimal POM M = |¢. Xy
and M, = |¢_X¢_|, with

4,) = 0.094 |g) + 0.996 |e) ,
) = 0.996 |g) — 0.094 |e) .

Remarks:

e Globdlly optimal, r-independent.

e Establishes the fundamental preci-
sion limit for the estimation of .

Conclusions
e [This work demonstrates the optimal estimation of a fime scale

using quantum resources.

e This has been possible thanks to quantum scale mefrology, a new
framework enabling the most precise estimation of scale param-
eters adllowed by quantum mechanics.

e By virfue of having generalised metrology beyond phase estima-
fion, this work sets the path for the construction of new quantum
estimation theories for all kinds of parameters.



